Seperating Complexity Classes Related to Certain Input Oblivious Logarithmic Space-Bounded Turing Machines
نویسندگان
چکیده
In thefollowing we prove that input oblivious simultaneously linear access-time and logarithmic space-bounded nondeterministic Turing machines are more powerful than deterministic ones. Moreover, we separate all the corresponding complexity classes Lo Hn, 7VZ0Un, co-NL0i Iîn and P~AL01infrom each other. Résumé. — Dans cet article, nous prouvons que les machines de Turing non déterministes à lecture insensible à la donnée, à temps d'accès linéaire et en space borné logarithmiquement sont plus puissantes que les machines de Turing déterministes de même nature. De plus, nous séparons les classes de complexité correspondantes les unes des autres.
منابع مشابه
Uncountable classical and quantum complexity classes
Polynomial–time constant–space quantum Turing machines (QTMs) and logarithmic–space probabilistic Turing machines (PTMs) recognize uncountably many languages with bounded error (Say and Yakaryılmaz 2014, arXiv:1411.7647). In this paper, we investigate more restricted cases for both models to recognize uncountably many languages with bounded error. We show that double logarithmic space is enough...
متن کاملSeparating the eraser Turing machine classes I + , NIL , , co - N ! + _ and P , Matthias Krause
Krause, M., C. Meinel and S. Waack, Separating the eraser Turing machine classes, Theoretical Computer Science 86 (1991) 267-275. By means of exponential lower and polynomial upper bounds for read-once-only n-branching programs we separate the logarithmic space-bounded complexity classes L,, NL,, co-NL, and P, for eraser Turing machines.
متن کاملSeparating Complexity Classes Using Autoreducibility
A set is autoreducible if it can be reduced to itself by a Turing machine that does not ask its own input to the oracle. We use autoreducibility to separate the polynomial-time hierarchy from polynomial space by showing that all Turing-complete sets for certain levels of the exponential-time hierarchy are autoreducible but there exists some Turing-complete set for doubly exponential space that ...
متن کاملOn Equivalence of Nondeterministic and Unambiguous Logarithmic Space Bounded Turing Machines
متن کامل
Reversal complexity revisited
We study a generalized version of reversal bounded Turing machines where, apart from several tapes on which the number of head reversals is bounded by r(n), there are several further tapes on which head reversals remain unrestricted, but size is bounded by s(n) (where n denotes the input length). Recently [9,10], such machines were introduced as a formalization of a computation model that restr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ITA
دوره 26 شماره
صفحات -
تاریخ انتشار 1989